Preparation of asymmetric gas separation membranes with high selectivity by a dual-bath coagulation method

نویسندگان

  • J. A. van ‘t Hof
  • C. A. Smolders
چکیده

A new method for the preparation of gas separation membranes in a one-step procedure is presented, where common, non-volatile solvents can be used in the polymer solution. It concerns contacting of a polymer solution with two successive nonsolvent baths, whereby the first bath initiates the formation of a dense top layer and the second bath gives the actual polymer precipitation. Membranes made by this method will have high gas selectivity and do not need any additional coating. The new technique was used to make polyethersulfone (PES) hollow fibres from solutions consisting of 35% (w/w) polymer and 10% glycerol in N-methylpyrrolidone (NMP). High selectivities were obtained when using glycerol or 1-pentanol as the first nonsolvent and water as the second one. For a feed gas of 25 vol.% of CO, in methane the intrinsic selectivity of PES [a (CO&H,) x 501 was easily obtained, without the necessity of an additional coating step. By a step-wise, liquid exchange removal of residual fluids in the fibres, an improvement in flux could be obtained. This was accompanied by a somewhat lower selectivity compared to that of directly air-dried fibres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل سازی ریاضی انتقال جرم گازها در غشا‌ءهای نامتقارن متخلخل پلیمری

It is several decades that the application of membrane processes for gas separation has become a great concern within industries. Among them, the polymeric membranes of different structures have played the most important role. Such application has been widely extended to gas separation and due to the necessity of both; prediction of the behavior of these processes and recognition of the effecti...

متن کامل

Characterization of Commercial Ceramic and Hybrid Membranes Using Gas Permeation and Permporometry Tests

The gas separation performance of commercial ceramic Titania and hybrid silica (HybSi®) membranes was assessed using the gas permeation and permporometry methods. Results indicated that the HybSi® membranes have a hybrid surface containing regions covered by a polymeric matrix and others with inorganic pores. These membranes have high H2 selectivity, which incre...

متن کامل

A New Resistance Model for Interpretation of Gas Permeation Data of Composite and Asymmetric Membranes

In this work a new resistance model has been presented based on that of Henis-Tripodi which can be used for interpretation of gas permeation data in composite and asymmetric membranes. In contrast to the previous works, in this model the fraction of the support layer surface that includes the pores filled with coating material has been taken into account. The influences of the filled pores on s...

متن کامل

Effect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation

Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...

متن کامل

Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001